

APPENDIX 11-2

CARBON CALCULATIONS

Core input data

ENTER INPUT DATA HERE! VALUES SHOULD ONLY BE CHANGED ON THIS SHEET. DO NOT USE EXAMPLE VALUES AS DEFAULTS! ENTER YOUR OWN VALUES THAT ARE SPECIFIC TO YOUR PARTICULAR SITE.

Note: The input parameters include some variables that can be specified by default values, but others that must be site specific. Variables that can be taken from defaults are marked with purple tags on left hand side.

Click here to move to Payback Time Click here
Click here to return to Instructions Click here

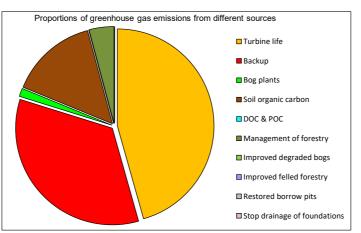
	Expected values		Pos	sible rar	ge of values		
Input data	Enter expected value here	Record source of data	Enter minimum value here	Record source of data	Enter maximum value here	Record source of data	Note: <u>Capacity factor</u> . The capacity factor of any power plant is the proportion of energy produced during a given period with respect to the energy that would have been produced had the wind farm been running continually and at maximum output (DECC (2004); see also
Windfarm characteristics	*	Oi data	+	or data	*	oi data	www.bwea.com/ref/capacity/actors.html). Capacity Factor = Electricity generated during the period [kWh]/ (Installed capacity [kW] x number of hours in the period [h])
<u>Dimensions</u> No. of turbines	9		9		9		We recommend that a site-specific capacity factor eite-should be used (as measured during planning stage), and should represent the average emission factor expected over the lifetime of the windfarm, accounting for decline in efficiency with age (Hughes, 2012). The 5 year average
ifetime of windfarm (years) <u>Performance</u>	35	Fixed	35		35		capacity factor (or "load factor") for UK onshore wind between 2010 and 2014, based on average beginning and end of year capacity, was 29.2% (DUKES, 2015).
Power rating of turbines (turbine capacity) (MW) Capacity factor	7 Direct input of capacity fac ▼		6.9 Direct input of capacity fac ▼		7.1 Direct input of capacity fac ▼		Note: Extra capacity required for backup. If 20% of national electricity is generated by wind
Enter estimated capacity factor (percentage efficiency)	0.35		0.35		0.35		energy, the extra capacity required for backup is 5% of the rated capacity of the wind plant (Dale et al 2004). We suggest this should be 5% of the actual output. If it is assumed that less than 20% of national electricity is generated by wind energy, a lower percentage should be entered
extra capacity required for backup (%) Additional emissions due to reduced thermal efficiency of the	5		5		5 ◆		(0%). The House of Lords Economic Affairs Committee report on The Economics of Renewable Energy (Parliamentary Business, 2008) notes that to cover peak demand a '20% margin of extra
eserve generation (%) Carbon dioxide emissions from turbine life -	10 Calculate wrt installed cap ▼		10 Calculate wrt installed cap ▼		10 Calculate wrt installed cap ▼		capacity has been sufficient to keep the risk of a power cut due to insufficient generation at a very low level.' The estimate provided by BERR was a range of 10% to 20% of installed capacity of wind energy. E.ON is reported as proposing that the capacity credit of wind power should be 8%,
eg. manufacture, construction, decommissioning)	Calculate wrt installed cap		Calculate wit installed cap		Calculate wit installed cap		and The Renewable Energy Foundation proposed the use of the square root of the wind capacity (in GW) as conventional capacity (e.g. 36 GW of wind plant to match 6 GW of conventional plant).
					K		Note: Extra emissions due to reduced thermal efficiency of the reserve power generation ≈ 10%
Characteristics of peatland before windfarm development Type of peatland	Acid b₁ ▼		Acid b₁ ▼		Acid b₁ ▼		Note: Emissions from turbine life, If total emissions for the windfarm are unknown, emissions
vverage annual air temperature at site (°C) vverage depth of peat at site (m)	9.27 1.30		4.6 1.30		15 1.30		should be calculated according to turbine capacity. The normal range of CO ₂ emissions is 394 to 8147 t CO ₂ MW (White & Kulcinski, 2000; White, 2007).
Content of dry peat (% by weight)	53.23 15.00		19.57 15.00		64.28 15.00		Note: Type of peatland An 'acid bog' is fed primarily by rainwater and often inhabited by sphagnum moss, thus making it acidic (Stoneman & Brocks,1997). A 'fen' is a type of wetland fed by surface and/or groundwater (McBride et al., 2011).
Nerage extent of drainage around drainage features at site (m) Nerage water table depth a site (m)	0.50		0.10		1.00		
Ory soil bulk density (g cm ⁻³) Characteristics of bog plants	0.132		0.072		0.293		Note: Time required for regeneration of previous habitat. Loss of fixation should be assumed to
ime required for regeneration of bog plants after restoration years)	10		5		15		be over lifetime of windfarm only. This time could be longer if plants do not regenerate. The requirements for after-use planning include the provision of suitable refugia for peat-forming vegetation, the removal of structures, or an assessment of the impact of leaving them in situ.
Carbon accumulation due to C fixation by bog plants in Indrained peats (tC ha ⁻¹ yr ⁻¹)	0.25		0.2		0.3◀		Methods used to reinstate the site will affect the likely time for regeneration of the previous habitat. This time could also be shorter if plants regenerate during lifetime of windfarm. If so, enter number of years estimated for regeneration.
Forestry Plantation Characteristics Method used to calculate CO ₂ loss from forest felling	Enter simple data ▼		Enter simple data ▼		Enter simple data ▼		Note: Carbon fixation by bog plants Apparent C accumulation rate in peatland is 0.12 to 0.31 t C har¹ yr¹ (Turunen et al., 2001; Botch
Area of forestry plantation to be felled (ha) Average rate of carbon sequestration in timber (tC ha-1 yr-1)	11.25 3.45		11.25 3.50		11.2 5 3.55		et al., 1995). The SNH guidance uses a value of 0.25 t C ha ⁻¹ yr ⁻¹ .
Counterfactual emission factors o update counterfactual emission factors							Note: <u>Area of forestry plantation to be felled</u> . If the forestry was planned to be removed, with no further rotations planted, before the windfarm development, the area to be felled should be
Click here (not yet operational)							entered as zero. Note: Plantation carbon sequestration. This is dependent on the yield class of the forestry. The
Coal-fired plant emission factor (t CO ₂ MWh ⁻¹) Grid-mix emission factor (t CO ₂ MWh ⁻¹)	0.945 0.207		0.945 0.207		0.945		SNH technical guidance assumed yield class of 16 m ³ har ¹ yr ⁻¹ , compared to the value of 14 m ³ har ¹ yr ⁻¹ provided by the Forestry Commission. Carbon sequestered for yield class 16 m ³ har ¹ yr ⁻¹
ossil fuel-mix emission factor (t CO ₂ MWh ⁻¹)	0.424		0.424		0.424		= 3.6 tC ha ⁻¹ yr ⁻¹ (Cannell, 1999). Note: Coal-Fired Plant and Grid Mix Emission Factors. Coal-fired plant emission factor (EF) from
Borrow pits Number of borrow pits	0		0		0		electricity supplied in 2014 = 0.093 t CO ₂ MWh ⁻¹ : Grid-Mix EF for 2014 = 0.394 t CO ₂ MWh ⁻¹ : Source = DUKES, 2015b.
Average length of pits (m) Average width of pits (m) Average depth of peat removed from pit (m)	0 0 0.00		0 0 0.00		0 0 0.00		Note: Fossil Fuel-Mix Emission Factor. The emission factor from electricity supplied in 2014 from all fossil fuels = 0.642 t CO ₂ MWh ⁻¹ . Source = DUKES, 2015b.
roundations and hard-standing area associated with each turbine	0.00		0.00		0.00		
Method used to calculate CO ₂ loss from foundations and hard-	Rectangular with vertical w ▼		Rectangular with vertical w ▼		Rectangular with vertical w ▼		_
tanding verage length of turbine foundations (m)	25		25		25		
Average width of turbine foundations (m) Average depth of peat removed from turbine foundations (m)	25 1.30		25 1.30		25 1.30		
Nerage length of hard-standing (m) Nerage width of hard-standing (m)	97 35		97 35		97 35		
verage depth of peat removed from hard-standing (m) Access tracks	1.30		1.30		1.30		Note: Total length of access track. If areas of access track overlap with hardstanding area,
otal length of access track (m) Existing track length (m)	10550 1250		10550 1250		10550 ◀ 1250		exclude these from the total length of access track to avoid double counting of land area lost.
ength of access track that is floating road (m) floating road width (m)	2100 5		2100 5		2100 5		Note: Floating road depth. Accounts for sinking of floating road. Should be entered as the
loating road depth (m) ength of floating road that is drained (m)					—		average depth of the road expected over the lifetime of the windfarm. If no sinking is expected, enter as zero.
Nerage depth of drains associated with floating roads (m) ength of access track that is excavated road (m)	7200		7200		7200		Note: Length of floating road that is drained. Refers to any drains running along the length of the road.
Excavated road width (m) Nerage depth of peat excavated for road (m)	5 1.30		5 1.30		5 1.30		Note: Rock filled roads. Rock filled roads are assumed to be roads where no peat has been
ength of access track that is rock filled road (m) Rock filled road width (m)					•		removed and rock has been placed on the surface and allowed to settle.
Rock filled road depth (m) ength of rock filled road that is drained (m)							
verage depth of drains associated with rock filled roads (m) Cable Trenches							
ength of any cable trench on peat that does not follow access racks and is lined with a permeable medium (eg. sand) (m)							Note: Depth of peat cut for cable trenches. In shallow peats, the cable trenches may be cut below
Additional peat excavated (not	1.20		1.20		1.20 1		the peat. To avoid overestimating the depth of peat affected by the cable trenches, only enter the depth of the peat that is cut.
already accounted for above) /olume of additional peat excavated (m³)	4110		4110		4110		Note: Peat Landslide Hazard, It is assumed that measures have been taken to limit damage
Area of additional peat excavated (m²) Peat Landslide Hazard	34800.0 Negligible		34800.0 Negligible		34800.0 Negligible ◀		(Scotlish Executive, 2006, Peat Landslide Hazard and Risk Assessments, Best Practice Guide for Proposed Electricity Generation Developments, Scotlan Executive, Edriburgh, pp. 34-35) so that C losses due to peat landslide can be assumed to be negligible. Link: http://www.scotland.gov.uk/prictiations/2009/11/21/126230/1.
Veblink: Peat Landslide Hazard and Risk Assessments: Best Practice Guide for Proposed Electricity Generation							described to be fregringure. Life. http://www.scosand.gov.uk/Pubications/20041/2/211023041.
Developments Improvement of C sequestration at site by blocking drains,							
restoration of habitat etc mprovement of degraded bog							
Area of degraded bog to be improved (ha) Vater table depth in degraded bog before improvement (m)							
Vater table depth in degraded bog after improvement (m) Time required for hydrology and habitat of bog to return to its							Note: Period of time when improvement can be guaranteed. This guarantee should be absolute.
revious state on improvement (years) Period of time when effectiveness of the improvement in							Therefore, if you enter a value beyond the lifetime of the windfarm you should provide strong supporting evidence that this improvement can be guaranteed for the full period given. This includes the time requirement for the improvement to become effective. For example if time required for
legraded bog can be guaranteed (years) mprovement of felled plantation land	25		25		25 ◀		hydrology and habitat to return to its previous state is 10 years and the restoration can be guaranteed over the lifetime of the windfarm (25 years), the period of time when the improvement
vrea of felled plantation to be improved (ha) Vater table depth in felled area before improvement (m)							can be guaranteed should be entered as 25 years, and the improvement will be effective for (25 -10 = 15 years.
vater table depth in relied area before improvement (m) Yater table depth in felled area after improvement (m) Time required for hydrology and habitat of felled plantation to							Note: Period of time when improvement can be guaranteed. This gurantee should be absolute.
eturn to its previous state on improvement (years) Period of time when effectiveness of the improvement in felled							Therefore, if you enter a value beyond the lifetime of the windfarm you should provide strong supporting evidence that this improvement can be guaranteed for the full period given. This includes the time requirement for the improvement to become effective. For example if time required for
Restoration of peat removed from borrow pits	25		25		25 ←		hydrology and habitat to return to its previous state is 10 years and the restoration can be guaranteed over the lifetime of the windfarm (25 years), the period of time when the improvement
resolvation of pear removed from borrow pits wea of borrow pits to be restored (ha) Depth of water table in borrow pit before restoration with respect							can be guaranteed should be entered as 25 years, and the improvement will be effective for (25 -10 = 15 years.
the restored surface (m)							Note: Period of time when improvement can be guaranteed. This gurantee should be absolute.
o the restored surface (m) Depth of water table in borrow pit after restoration with respect to he restored surface (m)							Therefore, if you enter a value beyond the lifetime of the windfarm you should provide strong
o the restored surface (m) bepth of water table in borrow pit after restoration with respect to he restored surface (m) Time required for hydrology and habitat of borrow pit to return to its previous state on restoration (years)							Therefore, if you enter a value beyond the lifetime of the windfarm you should provide strong supporting evidence that this improvement can be guaranteed for the full period given. This include the time requirement for the improvement to become effective. For example if time required for
o the restored surface (m) lepth of water table in borrow pit after restoration with respect to he restored surface (m) "ime required for hydrology and habitat of borrow pit to return to s previous state on restoration (years) Period of time when effectiveness of the restoration of peat emoved from borrow pits can be guaranteed (years)			25		25 ←		Therefore, if you enter a value beyond the lifetime of the windfarm you should provide strong supporting evidence that this improvement can be guaranteed for the full period given. This include the time requirement for the improvement to become effective. For example if time required for hydrology and habitat to return to its previous state is 10 years and the restoration can be guaranteed over the lifetime of the windfarm (25 years), the period of time when the improvement can be guaranteed should be entered as 25 years, and the improvement will be effective for (25 - 116).
the restored surface (m) bepth of water table in borrow pit after restoration with respect to he restored surface (m) ime required for hydrology and habitat of borrow pit to return to is previous state on restoration (years) Period of time when effectiveness of the restoration of peat emoved from borrow pits can be guaranteed (years) arily removal of drainage from foundations and hardstanding Vater table depth around foundations and hardstanding before			25		25 ←		Therefore, if you enter a value beyond the lifetime of the windfarm you should provide strong supporting evidence that this improvement can be guaranteed for the full period given. This include the time requirement for the improvement to become effective. For example if time required for hydrology and habitat to return to its previous state is 10 years and the restoration can be guaranteed over the lifetime of the windfarm (25 years), the period of time when the improvement can be guaranteed should be entered as 25 years, and the improvement will be effective for (25-10 years).
to the restored surface (m) bepth of water table in borrow pit after restoration with respect to he restored surface (m) ime required for hydrology and habitat of borrow pit to return to is previous state on restoration (years) eriod of time when effectiveness of the restoration of peat hemoved from borrow pits can be guaranteed (years) arity removal of drainage from foundations and hardstanding vater table depth around foundations and hardstanding before hestoration (m) Vater table depth around foundations and hardstanding after			25 15.00		25 ←	—	Therefore, if you enter a value beyond the lifetime of the windfarm you should provide strong supporting evidence that this improvement can be guaranteed for the full period given. This include the time requirement for the improvement to become effective. For example if time required for hydrology and habitat to return to its previous state is 10 years and the restoration can be guaranteed over the lifetime of the windfarm (25 years), the period of time when the improvement can be guaranteed should be entered as 25 years, and the improvement will be effective for (25 - 116).
to the restored surface (m) bepth of water table in borrow pit after restoration with respect to be restored surface (m) ime required for hydrology and habitat of borrow pit to return to s previous state on restoration (years) end of time when effectiveness of the restoration of peat enoved from borrow pits can be guaranteed (years) arriv removal of drainage from foundations and hardstanding Vater table depth around foundations and hardstanding before estoration (m) vater table depth around foundations and hardstanding after estoration (m) ime to completion of backfilling, removal of any surface drains,	25					•	Therefore, if you enter a value beyond the lifetime of the windfarm you should provide strong supporting evidence that this improvement can be guaranteed for the full period given. This include the time required for the improvement to become effective. For example if time required for hydrology and habitat to return to its previous state is 10 years and the restoration can be guaranteed over the lifetime of the windfarm (25 years), the period of time when the improvement can be guaranteed should be entered as 25 years, and the improvement will be effective for (25 ±10 ± 15 years). Note: Period of time when improvement can be guaranteed. This is assumed to be the lifetime of the windfarm as restoration after windfarm decommissioning is already accounted for in restoration of the site.
o the restored surface (m) oepth of water table in borrow pit after restoration with respect to he restored surface (m) ime required for hydrology and habitat of borrow pit to return to is previous state on restoration (years) Period of time when effectiveness of the restoration of peat emoved from borrow pits can be guaranteed (years) airly removal of drainage from foundations and hardstanding Vater table depth around foundations and hardstanding before estoration (m) Vater table depth around foundations and hardstanding after estoration (m) ime to completion of backfilling, removal of any surface drains, and full restoration of the hydrology (years) Restoration of site after decomissioning	25 15.00		15.00		15.00	-	Therefore, if you enter a value beyond the lifetime of the windfarm you should provide strong supporting evidence that this improvement can be guaranteed for the full period given. This include the time requirement for the improvement to become effective. For example if time required for hydrology and habitat to return to its previous state is 10 years and the restoration can be guaranteed over the lifetime of the windfarm (25 years), the period of time when the improvement can be guaranteed should be entered as 25 years, and the improvement will be effective for (25-10 years. Note: Period of time when improvement can be guaranteed. This is assumed to be the lifetime of the windfarm as restoration after windfarm decommissioning is already accounted for in restoration of
to the restored surface (m) bepth of water table in borrow pit after restoration with respect to the restored surface (m) ime required for hydrology and habitat of borrow pit to return to is previous state on restoration (years) beriod of time when effectiveness of the restoration of peat emoved from borrow pits can be guaranteed (years) carity removal of drainage from foundations and hardstanding Vater table depth around foundations and hardstanding before estoration (m) Vater table depth around foundations and hardstanding after estoration (m) Time to completion of backfilling, removal of any surface drains, and full restoration of the hydrology (years) Restoration of site after decomissioning Vill the hydrology of the site be restored on decommissioning? Vill the value of the site of the site be restored on decommissioning?	25 15.00		15.00 No			-	Therefore, if you enter a value beyond the lifetime of the windfarm you should provide strong supporting evidence that this improvement can be guaranteed for the full period given. This include the time required for hydrodoy and habitat to return to its previous state is 10 years and the restoration can be guaranteed over the lifetime of the windfarm (25 years), the period of time when the improvement can be guaranteed should be entered as 25 years, and the improvement will be effective for (25 ±10 ± 15 years). Note: Period of time when improvement can be guaranteed. This is assumed to be the lifetime of the windfarm as restoration after windfarm decommissioning is already accounted for in restoration of the site. Note: Restoration of site. If the water table at the site is returned to its original level or higher on decommissioning, and habitat at the site is restored, it is assumed that C losses continue only over
to the restored surface (m) obepth of water table in borrow pit after restoration with respect to he restored surface (m) ime required for hydrology and habitat of borrow pit to return to s previous state on restoration (years) Period of time when effectiveness of the restoration of peat hemoved from borrow pits can be guaranteed (years) arriy removal of drainage from foundations and hardstanding Vater table depth around foundations and hardstanding before estoration (m) Vater table depth around foundations and hardstanding after estoration (m) The storage of the hydrology (years) Restoration of the hydrology (years) Will the hydrology of the site be restored on decommissioning? Vill you attempt to block any gullies that have formed due to the vindfarm? Vill you attempt to block all artificial ditches and facilitate	25 15.00 No		15.00 No		15.00	•	Therefore, if you enter a value beyond the lifetime of the windfarm you should provide strong supporting evidence that this improvement can be guaranteed for the full period given. This include the time required for hydrodoy and habitat to return to its previous state is 10 years and the restoration can be guaranteed over the lifetime of the windfarm (25 years), the period of time when the improvement can be guaranteed should be entered as 25 years, and the improvement will be effective for (25 ±10 ± 15 years). Note: Period of time when improvement can be guaranteed. This is assumed to be the lifetime of the windfarm as restoration after windfarm decommissioning is already accounted for in restoration of the site. Note: Restoration of site. If the water table at the site is returned to its original level or higher on decommissioning, and habitat at the site is restored, it is assumed that C losses continue only over
to the restored surface (m) obepth of water table in borrow pit after restoration with respect to the restored surface (m) ime required for hydrology and habitat of borrow pit to return to is previous state on restoration (years) eriod of time when effectiveness of the restoration of peat emoved from borrow pits can be guaranteed (years) early removal of drainage from foundations and hardstanding Vater table depth around foundations and hardstanding before estoration (m) Vater table depth around foundations and hardstanding after estoration (m) ime to completion of backfilling, removal of any surface drains, ind full restoration of the hydrology (years) Restoration of site after decomissioning Vill the hydrology of the site be restored on decommissioning? Vill you attempt to block any guillies that have formed due to the windfarm?	25 15.00 No No No No No No		15.00 No No		15.00 No	•	Therefore, if you enter a value beyond the lifetime of the windfarm you should provide strong supporting evidence that this improvement can be guaranteed for the full period given. This include the time required for hydrodoy and habitat to return to its previous state is 10 years and the restoration can be guaranteed over the lifetime of the windfarm (25 years), the period of time when the improvement can be guaranteed should be entered as 25 years, and the improvement will be effective for (25 ±10 ± 15 years). Note: Period of time when improvement can be guaranteed. This is assumed to be the lifetime of the windfarm as restoration after windfarm decommissioning is already accounted for in restoration of the site. Note: Restoration of site. If the water table at the site is returned to its original level or higher on decommissioning, and habitat at the site is restored, it is assumed that C losses continue only over
to the restored surface (m) obepth of water table in borrow pit after restoration with respect to the restored surface (m) ime required for hydrology and habitat of borrow pit to return to is previous state on restoration (years) veriod of time when effectiveness of the restoration of peat emoved from borrow pits can be guaranteed (years) early removal of drainage from foundations and hardstanding Vater table depth around foundations and hardstanding before estoration (m) Vater table depth around foundations and hardstanding after estoration (m) ime to completion of backfilling, removal of any surface drains, and full restoration of the hydrology (years) Restoration of site after decomissioning Vill the hydrology of the site be restored on decommissioning? Vill you attempt to block any guillies that have formed due to the windfarm? Vill you attempt to block all artificial ditches and facilitate eventting? Vill you control grazing on degraded areas?	25 15.00 No No No No No No No No No		15.00 No No No No No No No No No		15.00 No No No No No No No No No	•	Therefore, if you enter a value beyond the lifetime of the windfarm you should provide strong supporting evidence that this improvement can be guaranteed for the full period given. This include the time required for hydrodoy and habitat to return to its previous state is 10 years and the restoration can be guaranteed over the lifetime of the windfarm (25 years), the period of time when the improvement can be guaranteed should be entered as 25 years, and the improvement will be effective for (25 ±10 ± 15 years). Note: Period of time when improvement can be guaranteed. This is assumed to be the lifetime of the windfarm as restoration after windfarm decommissioning is already accounted for in restoration of the site. Note: Restoration of site. If the water table at the site is returned to its original level or higher on decommissioning, and habitat at the site is restored, it is assumed that C losses continue only over
to the restored surface (m) obepth of water table in borrow pit after restoration with respect to he restored surface (m) ime required for hydrology and habitat of borrow pit to return to s previous state on restoration (years) Period of time when effectiveness of the restoration of peat emoved from borrow pits can be guaranteed (years) early removal of drainage from foundations and hardstanding Vater table depth around foundations and hardstanding before estoration (m) Vater table depth around foundations and hardstanding after estoration (m) ime to completion of backfilling, removal of any surface drains, ind full restoration of the hydrology (years) Restoration of site after decomissioning Vill the hydrology of the site be restored on decommissioning? Vill you attempt to block any guillies that have formed due to the windfarm? Vill you attempt to block all artificial ditches and facilitate execution? Vill the habitat of the site be restored on decommissioning?	25 15.00 No No No No No No No No No		15.00 No No No No No No No No No		15.00 No No No No No No No No No	-	Therefore, if you enter a value beyond the lifetime of the windfarm you should provide strong supporting evidence that this improvement can be guaranteed for the full period given. This include the time requirement for the improvement to become effective. For example if time required for hydrology and habitat to return to its previous state is 10 years and the restoration can be guaranteed over the lifetime of the windfarm (25 years), the period of time when the improvement can be guaranteed should be entered as 25 years, and the improvement will be effective for (25-10 years). Note: Period of time when improvement can be guaranteed. This is assumed to be the lifetime of the windfarm as restoration after windfarm decommissioning is already accounted for in restoration of the site. Note: Restoration of site. If the water table at the site is returned to its original level or higher on decommissioning, and habitat at the site is restored, it is assumed that C losses continue only over the lifetime of the windfarm. Otherwise, C losses from drained peat are assumed to be 100%. Note: Choice of methodology for calculating emission factors. The IPCC default methodology is the internationally accepted standard (IPCC, 1997). However, it is stated in IPCC (1997) that these are
to the restored surface (m) obepth of water table in borrow pit after restoration with respect to the restored surface (m) ime required for hydrology and habitat of borrow pit to return to is previous state on restoration (years) veriod of time when effectiveness of the restoration of peat emoved from borrow pits can be guaranteed (years) early removal of drainage from foundations and hardstanding Vater table depth around foundations and hardstanding before estoration (m) Vater table depth around foundations and hardstanding after estoration (m) ime to completion of backfilling, removal of any surface drains, and full restoration of the hydrology (years) Restoration of site after decomissioning Vill the hydrology of the site be restored on decommissioning? Vill you attempt to block any guillies that have formed due to the windfarm? Vill you attempt to block all artificial ditches and facilitate eventting? Vill you control grazing on degraded areas?	25 15.00 No No No No No No No No No	olications)	15.00 No No No No No No No No No		15.00 No No No No No No No No No	•	Therefore, if you enter a value beyond the lifetime of the windfarm you should provide strong supporting evidence that this improvement can be guaranteed for the full period given. This include the time requirement for the improvement to become effective. For example if time required for hydrology and habitat to return to its previous state is 10 years and the restoration can be guaranteed over the lifetime of the windfarm (25 years), the period of time when the improvement can be guaranteed about be entered as 25 years, and the improvement will be effective for (25-16 years). Note: Period of time when improvement can be guaranteed. This is assumed to be the lifetime of the windfarm as restoration after windfarm decommissioning is already accounted for in restoration of the site. Note: Restoration of site. If the water table at the site is returned to its original level or higher on decommissioning, and habitat at the site is returned to the confine only over the lifetime of the windfarm. Otherwise, C losses from drained peat are assumed to be 100%. Note: Choice of methodology for calculating emission factors. The IPCC default methodology is the

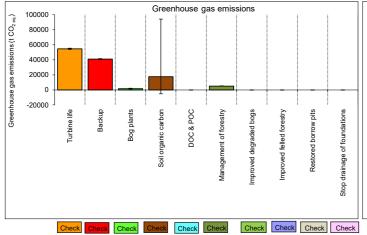
ARE SPECIFIC TO YOUR PARTICULAR SITE.

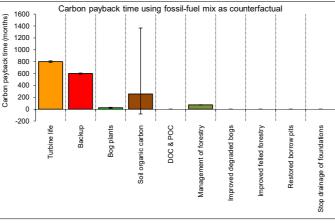
Note: The input parameters include some variables that can be specified by default values, but others that must be site specific. Variables that can be taken from defaults are marked with purple tags on left hand side.

Results PAYBACK TIME AND CO₂ EMISSIONS

Note: The carbon payback time of the windfarm is calculated by comparing the loss of C from the site due to Click here to return to Instructions windfarm development with the carbon-savings achieved by the windfarm while displacing electricity generated om coal-fired capacity or grid-mix.


Click here to return to Input data


Click here



	Ехр.	Min.	Мах.
1. Windfarm CO ₂ emission saving over			
coal-fired electricity generation (tCO ₂ yr ⁻¹)	1825	1799	1851
grid-mix of electricity generation (tCO ₂ yr ⁻¹)	400	394	406
fossil fuel - mix of electricity generation (tCO ₂ yr ⁻¹)	819	807	831
Energy output from windfarm over lifetime (MWh)	67605	66640	68571
Total CO ₂ losses due to wind farm (t CO ₂ eq.)	=		
Losses due to turbine life (eg. manufacture, construction, decomissioning)	54656	53815	55497
3. Losses due to backup	40949	40365	41534
4. Losses due to reduced carbon fixing potential	1656	1177	2208
5. Losses from soil organic matter	17555	-5161	94267
6. Losses due to DOC & POC leaching	0	0	0
7. Losses due to felling forestry	4981	5054	5126
Total losses of carbon dioxide	119798	95250	198632
8. Total CO ₂ gains due to improvement of site (t CO ₂ eq.)			
8a. Change in emissions due to improvement of degraded bogs	0	0	0
8b. Change in emissions due to improvement of felled forestry	0	0	0
8c. Change in emissions due to restoration of peat from borrow pits	0	0	0
8d. Change in emissions due to removal of drainage from foundations & hardstanding	0	0	0
Total change in emissions due to improvements	0	0	0

RESULTS			
	Ехр.	Min.	Max.
Net emissions of carbon dioxide (t CO _{2 eq} .)			
	119798	95250	198632
Carbon Payback Time			
coal-fired electricity generation (years)	65.6	51.4	110.4
grid-mix of electricity generation (years)	299.6	234.9	504.0
fossil fuel - mix of electricity generation (years)	146.3	114.7	246.0
Ratio of soil carbon loss to gain by restoration (TARGET ratio (Natural Resources Wales) < 1.0)	No gains!	No gains!	No gains
Ratio of CO ₂ eq. emissions to power generation (g / kWh) (TARGET ratio by 2030 (electricity generation) < 50 g /kWh)	1772	1389	2981

Results
PAYBACK TIME AND CO₂ EMISSIONS

Note: The carbon payback time of the windfarm is calculated by comparing the loss of C from the site due to windfarm development with the carbon-savings achieved Click here to return to Instructions by the windfarm while displacing electricity generated from coal-fired capacity or grid-mix.

Click here to return to Input data

Data used in barchart of carbon payback time using fossil-fuel mix as counterfactual

Greenhouse gas emissions			
_	Ехр.	Min	Max
Turbine life	54656	841	841
Backup	40949	585	585
Bog plants	1656	478	552
Soil organic carbon	17555	22716	76712
DOC & POC	0	0	0
Management of forestry	4981	0	144
Improved degraded bogs	0	0	0
Improved felled forestry	0	0	0
Restored borrow pits	0	0	0
Stop drainage of foundations	0	0	0

Data used in barchart of carbon payback time using fossil fuel mix as counterfactual

Greenhouse gas emissions				Carbon pay	back time	(months)
	Ехр.	Min.	Мах.	Ехр.	Min.	Мах.
Turbine life	54656	841	841	801	12	12
Backup	40949	585	585	600	9	8
Bog plants	1656	478	552	24	7	8
Soil organic carbon	17555	22716	76712	257	338	1108
DOC & POC	0	0	0	0	0	0
Management of forestry	4981	-72	144	73	-1	2
Improved degraded bogs	0	0	0	0	0	0
Improved felled forestry	0	0	0	0	0	0
Restored borrow pits	0	0	0	0	0	0
Stop drainage of foundations	0	0	0	0	0	0
	119798			1755		

Emissions due to turbine life

Note: The carbon payback time of the windfarm due to turbine life (eg. manufacture, construction, decomissioning) is calculated by comparing the emissions due to turbine life with carbon-savings achieved by the windfarm while displacing electricity generated from coal-fired capacity or grid-mix.

Method used to estimate CO ₂	Calculate wrt installed
emissions from turbine life (eg.	capacity
manufacture, construction.	Capacity

	Exp	Min	Max
Direct input of emissions due to	_	•	•
turbine life (t CO ₂ windfarm ⁻¹)	0	0	U
Calculation of emissions due to turbine	life from	energy o	utput
CO ₂ emissions due to turbine life (tCO ₂ turbine ⁻¹)	6073	5979	6166
No. of turbines	9	9	9
Total calculated CO ₂ emission of the wind farm due to turbine life (t CO ₂ windfarm ⁻¹)	54656	53815	55497

		Total		Cons	truction I	Area 1	Cons	truction A	Area 2	Cons	truction A	Area 3	Cons	truction I	Area 4	Const	truction A	Area 5
	Exp	Min	Max	Exp	Min	Max	Exp	Min	Max	Exp	Min	Max	Exp	Min	Max	Exp	Min	Max
Calculation of emissions due to cement																		
used in construction																		
Volume of cement used (m ³)	0	0	0	0	0	0		0	0	0	0	0		0	0	0	0	0
CO ₂ emission rate (t CO ₂ m ⁻³ cement)	0.316	0.316	0.316	0.316	0.316	0.316	0.316	0.316	0.316	0.316	0.316	0.316	0.316	0.316	0.316	0.316	0.316	0.316
Total CO ₂ emissions due to cement used	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	ŭ	Ů	ů						
RESULTS									
Losses due to turbine life (eg.	54656	53815	55497						
Additional CO ₂ payback time of windfarm due to turbine life (eg.									
manufacture, contruction, decomission	ing)								
coal-fired electricity generation (months)	359	359	360						
grid-mix of electricity generation (months)	1640	1639	1642						
fossil fuel - mix of electricity generation (months)	801	800	802						

Click here to move to Payback Time Click here

Emissions due to turbine life

Note: The carbon payback time of the windfarm due to turbine life (eg. manufacture, construction, decomissioning) is calculated by comparing the emissions due to turbine life with carbon-savings achieved by the windfarm while displacing electricity generated from coal-fired capacity or grid-mix.

http://www.concretecentre.com/PDF/SCF_Table%207%20Embodied%20CO2_April%202013.pdf

Embodied carbon dioxide ($co_{2}e$) of concretes used in buildings

		cc	o₂e (kgCO₂e/	m ³) ¹	CO₂e	(kgCO₂e/to	nne)1
CONCRETE APPLICATION	Concrete designation	CEM I concret e	30% fly ash concrete	50% ggbs concrete	CEM I	30% fly ash concrete	50% ggbs concrete
Blinding, mass fill, strip footings, mass foundations, trench foundations ²	GEN1	177	128	101	77	55	44
Reinforced Foundations ²	RC25/30**	316	263	197	133	111	83
Ground floors ²	RC28/35	316	261	186	134	110	79
Structural: in situ floors, superstructure, walls, basements 2	RC32/40	369	313	231	154	131	96
High strength concrete ²	RC40/50	432	351	269	178	146	111
		C	O₂e (kgCO₂e/	m³)	CO26	e (kgCO₂e/to	onne)
Unreinforced Precast flooring ³			-			165	
Reinforced precast flooring ³			9			171	
Average Generic Concrete Block ⁴					84		

- includes 30kg/m³ steel reinforcement
- includes 100kg/m³ steel reinforcement

Emissions due to backup power generation

Note: CO2 loss due to back up is calculated from the extra capacity required for backup of the windfarm given in the input data.

	Expected	Minimum	Maximum
Reserve capacity required for backup			
No. of turbines	9	9	9
Power rating of turbines (turbine capacity) (MW)	7	6.9	7.1
Power of wind farm (MW h ⁻¹)	63	62.1	63.9
Rated capacity (MW yr ⁻¹)	551880	543996	559764
Extra capacity required for backup (%)	5	5	5
Additional emissions due to reduced thermal efficiency of the reserve generation (%)	10	10	10
Reserve capacity (MWh yr ⁻¹)	2759	2720	2799

Carbon dioxide emissions due to backup power generation			
Coal-fired plant emission factor (t CO ₂ MWh ⁻¹)	0.945	0.945	0.945
Grid-mix emission factor (t CO ₂ MWh ⁻¹)	0.207	0.207	0.207
Fossil fuel- mix emission factor (t CO ₂ MWh ⁻¹)	0.424	0.424	0.424
Lifetime of windfarm (years)	35	35	35
Annual emissions due to backup from			
coal-fired electricity generation (tCO ₂ yr ⁻¹)	2608	2570	2645
grid-mix of electricity generation (tCO ₂ yr ⁻¹)	571	563	579
fossil fuel - mix of electricity generation (tCO ₂ yr ⁻¹)	1170	1153	1187

RESULTS			
Total emissions due to backup from			
coal-fired electricity generation (tCO ₂)	91267	89963	92571
grid-mix of electricity generation (tCO ₂)	19992	19706	20277
fossil fuel - mix of electricity generation (tCO ₂)	40949	40365	41534
Additional CO ₂ payback time of windfarm due to backup			
coal-fired electricity generation (months)	600	600	600
grid-mix of electricity generation (months)	600	600	600
fossil fuel - mix of electricity generation (months)	600	600	600

Click here to move to Payback Time Click here
Click here to return to Instructions Click here

Emissions due to backup power generation

Note: CO₂ loss due to back up is calculated from the extra capacity required for backup of the windfarm given in the input data.

Note: Wind generated electricity is inherently variable, providing unique challenges to the electricity generating industry for provision of a supply to meet consumer demand (Netz, 2004). Backup power is required to accompany wind generation to stabilise the supply to the consumer. This backup power will usually be obtained from a fossil fuel source. At a high level of wind power penetration in the overall generating mix, and with current grid management techniques, the capacity for fossil fuel backup may become strained because it is being used to balance the fluctuating consumer demand with a variable and highly unpredictable output from wind turbines (White, 2007). The Carbon Trust (Carbon Trust/DTI, 2004) concluded that increasing levels of intermittent generation do not present major technical issues at the percentages of renewables expected by 2010 and 2020, but the UK renewables target at the time of that report was only 20%. When national reliance on wind power is low (less than ~20%), the additional fossil fuel generated power requirement can be considered to be insignificant and may be obtained from within the spare generating capacity of other power sectors (Dale et al, 2004). However, as the national supply from wind power increases above 20%, without improvements in grid management techniques, emissions due to backup power generation may become more significant. The extra capacity needed for backup power generation is currently estimated to be 5% of the rated capacity of the wind plant if wind power contributes more than 20% to the national grid (Dale et al 2004). Moving towards the SG targe of 50% electricity generation from renewable sources, more short-term capacity may be required in terms of pumped-storage hydro-generated power, or a better mix of offshore and onshore wind generating capacity. Grid management techniques are anticipated to reduce this extra capacity, with improved demand side management, smart meters, grid reinforcement and other developments. However, given current grid management techniques, it is suggested that 5% extra capacity should be assumed for backup power generation if wind power contributes more than 20% to the national grid. At lower contributions, the extra capacity required for backup should be assumed to be zero. These assumptions should be revisited as technology improves.

Assumption: Backup assumed to be by fossil-fuel-mix of electricity generation. Note that hydroelectricity may also be used for backup, so this assumption may make the value for backup generation too high. These assumptions should be revisited as technology develops.

Emissions due to loss of bog plants

Note: Annual C fixation by the site is calculated by multiplying area of the windfarm by the annual C accumulation due to bog plant fixation

	Expected	Minimum	Maximum
Area where carbon accumulation by bog plants is lost			
Total area of land lost due to windfarm construction (m ²)	117480	117480	117480
Total area affected by drainage due to windfarm construction (m ⁻²)	283866	283866	283866
Total area where fixation by plants is lost (m ²)	401346	401346	401346
Total loss of carbon accumulation			
Carbon accumulation in undrained peats (tC ha ⁻¹ yr ⁻¹)	0.25	0.2	0.3
Lifetime of windfarm (years)	35	35	35
Time required for regeneration of bog plants after restoration (years)	10	5	15
Carbon accumulation up to time of restoration (tCO ₂ eq. ha ⁻¹)	41	29	55
RESULTS			
Total loss of carbon accumulation by bog plants			
Total area where fixation by plants is lost (ha)	40	40	40
Carbon accumulation over lifetime of windfarm (tCO ₂ eq. ha ⁻¹)	41	29	55
Total loss of carbon fixation by plants at the site (t CO ₂)	1656	1177	2208
Additional CO ₂ payback time of windfarm due to loss of CO2 fixing	potential		
coal-fired electricity generation (months)	11	8	14
grid-mix of electricity generation (months)	50	36	65
fossil fuel - mix of electricity generation (months)	24	18	32

Click here to move to Payback Time Click here

Emissions due to loss of bog plants

Note: Annual C fixation by the site is calculated by multiplying area of the windfarm by the annual C accumulation due to bog plant fixation

- Assumptions:
 1. Bog plants are 100% lost from the area where peat is removed for construction.
- 2. Bog plants are 100% lost from the area where peat is drained.
 3. The recovery of carbon accumulation by plants on restoration of land is as given in inputs.

Emissions due to loss of soil organic carbon

Note: Loss of C stored in peatland is estimated from % site lost by peat removal (sheet 5a), CO₂ loss from removed peat (sheet 5b), % site affected by drainage (sheet 5c), and the CO2 loss from drained peat (sheet 5d).

	Expected result	Minimum result	Maximum result
CO ₂ loss due to windfarm construction			
CO ₂ loss from removed peat (t CO ₂ equiv)	14828	-5161	58064
CO ₂ loss from drained peat (t CO ₂ equiv)	2728	0	36203
RESULTS			
Total CO ₂ loss from peat (removed + drained) (t CO ₂ equiv)	17555	-5161	94267
Additional CO ₂ payback time of windfarm due to loss of soil CO2			
coal-fired electricity generation (months)	115	-34	611
grid-mix of electricity generation (months)	527	-157	2789
fossil fuel - mix of electricity generation (months)	257	-77	1362

Click here to move to Payback Time

Click here

Emissions due to loss of soil organic carbon

Note: Loss of C stored in peatland is estimated from % site lost by peat removal (sheet 5a), CO₂ loss from removed peat (sheet 5b), % site affected by drainage (sheet 5c), and the CO2 loss from drained peat (sheet 5d).

Volume of Peat Removed
Note: % site lost by peat removal is estimated from
peat removed in borrow pits, turbine foundations, hardstanding and access tracks.
If peat is removed for any other reason, this must be
added in as additional peat excavated in the core
input sheet.

Peat removed from borrow pits		Total	
real removed from borrow pits	Exp	Min	Max
Number of borrow pits	0	0	0
Average length of pits (m)	0	0	0
Average width of pits (m)	0	0	0
Average depth of peat removed from pit (m)	0	0	0
Area of land lost in borrow pits (m ²)	0	0	0
Volume of peat removed from borrow pits			
(m^3)	0	0	0

Don't warm arred from Arrebing form detions		Total		Cons	truction A	Area 1	Cons	truction /	Area 2	Cons	truction /	Area 3	Cons	truction /	Area 4	Cons	truction A	Area 5
Peat removed from turbine foundations	Exp	Min	Max	Exp	Min	Max	Exp	Min	Max	Exp	Min	Max	Exp	Min	Max	Exp	Min	Max
Method used to calculate CO ₂ loss from	Rectango	ılar with v	ertical															
foundations	walls																	
Calculation method code		1																
No. of turbines	9	9	9	9	9	9	0	0	0	0	0	0	0	0	0	0	0	0
Diameter at surface (m)				25	25	25	0	0	0	0	0	0	0	0	0	0	0	0
				25	25	25	0	0	0	0	0	0	0	0	0	0	0	0
Diameter at bottom (m)				25	25	25	0	0	0	0	0	0	0	0	0	0	0	0
				25	25	25	0	0	0	0	0	0	0	0	0	0	0	0
Depth of foundations (m)				1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
"Area" of land lost in hard-standing (m ²)	5625	5625	5625	5625	5625	5625	0	0	0	0	0	0	0	0	0	0	0	0
Volume of peat removed from foundation																		
area (m ³)	7312.5	7312.5	7312.5	7312.5	7312.5	7312.5	0	0	0	0	0	0	0	0	0		0	0
. ,			•															
Peat removed from hard-standing																		
Method used to calculate CO ₂ loss from	Rectango	ular with v	ertical															
foundations	walls																	
Calculation method code		1																I = I

Peat removed from hard-standing																		
Method used to calculate CO ₂ loss from	Rectango	ular with v	ertical															
foundations	walls																	
Calculation method code		1																
No. of turbines	9	9	9	9	9	9	0	0	0	0	0	0	0	0	0	0	0	0
Diameter at surface (m)				97	97	97	0	0	0	0	0	0	0	0	0	0	0	0
				35	35	35	0	0	0	0	0	0	0	0	0	0	0	0
Diameter at bottom (m)				97	97	97	0	0	0	0	0	0	0	0	0	0	0	0
				35	35	35	0	0	0	0	0	0	0	0	0	0	0	0
Depth of hardstanding (m)				1	1.3	1.3	0	0	0	0	0	0	0	0	0	0	0	0
Area of land lost in hard-standing (m ²)	30555	30555	30555	30555	30555	30555	0	0	0	0	0	0	0	0	0	0	0	0
Volume of peat removed from	39722	39722	39722	39722	39722	39722	0	0	0	0	0	0	0	0	0	0	0	0
hardstandingarea (m³)									The second second									

Peat removed from access tracks		Total	
Peat removed from access tracks	Exp	Min	Max
Floating roads			
Length of access track that is floating road			
(m)	2100	2100	2100
Floating road width (m)	5	5	5
Floating road depth (m)	0	0	0
Area of land lost in floating roads (m ²)	10500	10500	10500
Volume of peat removed for floating roads	0	0	0
Excavated roads			
Length of access track that is excavated			
road (m)	7200	7200	7200
Excavated road width (m)	5	5	5
Average depth of peat excavated for road			
(m)	1.3	1.3	1.3
Area of land lost in excavated roads (m ²)	36000	36000	36000
Volume of peat removed for excavated roads	46800	46800	46800
Rock-filled roads			
Length of access track that is rock filled road			
(m)	0	0	0
Rock filled road width (m)	0	0	0
Rock filled road depth (m)	0	0	0
Area of land lost in excavated roads (m ²)	0	0	0
Volume of peat removed for rock-filled roads	0	0	0
Total area of land lost in access tracks (m²) Total volume of peat removed due to access	46500	46500	46500
tracks (m ³)	46800	46800	46800

Additional peat excavated -			
(not already accounted for above)			
Volume of additional peat excavated (m ³)	4110	4110	4110
Area of additional peat excavated (m ²)	34800	34800	34800

RESULTS		Total	
	Exp	Min	Max
Total volume of peat removed (m³) due to windfarm construction Total area of land lost due to windfarm	97944	97944	97944
construction (m ²)	117480	117480	117480

Click here to move to 5b. CO2 loss from removed peat

Click here to move to Payback Time

Click here

Volume of Peat Removed
Note: % site lost by peat removal is estimated from
peat removed in borrow pits, turbine foundations, hardstanding and access tracks.
If peat is removed for any other reason, this must be
added in to the volume of peat removed, area of land
lost and % site lost at the bottom of this worksheet.

CO₂ loss from removed peats

Note: If peat is treated in such a way that it is permanently restored, so that less than 100% of the C is lost to the atmosphere, a lower percentage can be entered in cell C10

	Expected	Minimum	Maximum
CO ₂ loss from removed peat			
C Content of dry peat (% by weight)	53.23	19.57	64.28
Dry soil bulk density (g cm ⁻³)	0.13	0.07	0.29
% C contained in removed peat that is lost as CO ₂	100	100	100 ◀
Total volume of peat removed (m ³) due to windfarm construction	97944	97944	97944
CO ₂ loss from removed peat (t CO ₂)	25236	5061	67644

Assumption: If peat is not restored, 100% of the carbon contained in the removed peat is lost as CO₂

CO ₂ loss from undrained peat left in situ			
Total area of land lost due to windfarm construction (ha)	12	12	12
CO ₂ loss from undrained peat left in situ (t CO ₂ ha ⁻¹)	886	870	815
CO ₂ loss from undrained neat left in situ (t CO ₂)	10408	10221	9580

CO ₂ loss attributable to peat removal only			
CO ₂ loss from removed peat (t CO ₂)	25236	5061	67644
CO ₂ loss from undrained peat left in situ (t CO ₂)	10408	10221	9580
RESULTS			
CO ₂ loss attributable to peat removal only (t CO ₂)	14828	-5161	58064

Click here to move to 5. Loss of soil CO₂

Click here

Click here to move to Payback Time

Click here

CO₂ loss from removed peats

Note: If peat is treated in such a way that it is permanently restored, so that less than 100% of the C is lost to the atmosphere, a lower percentage can be entered in cell C10

Volume of peat drained

Note: Extent of site affected by drainage is calculated assuming an average extent of drainage around each drainage feature as given in the input data.

Extent of drainage around each metre	Total						
of drainage ditch	Exp	Min	Max				
Average extent of drainage around	15	15	15				
drainage features at site (m)	13	13	13				

Peat affected by drainage around	Total						
borrow pits	Exp	Min	Max				
Number of borrow pits	0	0	0				
Average length of pits (m)	0	0	0				
Average width of pits (m)	0	0	0				
Average depth of peat removed from pit (m)	0.0	0.0	0.0				
Area affected by drainage per borrow pit (m²)	900	900	900				
Total area affected by drainage around borrowpits (m ²)	0	0	0				
Total volume affected by drainage around borrowpits (m³)	0	0	0				

Peat affected by drainage around		Total		Cons	truction A	Area 1	Cons	truction A	Area 2	Cons	truction A	Area 3	Cons	truction /	Area 4	Cons	truction A	Area 5
turbine foundation and hardstanding	Exp	Min	Max	Exp	Min	Max	Exp	Min	Max	Exp	Min	Max	Exp	Min	Max	Exp	Min	Max
No. of turbines	9	9	9	9	9	9	0	0	0	0	0	0	0	0	0	0	0	0
Average length of turbine foundations at				25	25	25		0	0	0	0	0	0	0	0	0	0	0
base (m)				25	25	25		U	U	U	U	U	U	U	U	U	U	U
Average width of turbine foundations at				25	25	25		0	0	0	0	0	0	0	0	0	0	0
base(m)				20	20	25		U	U	U	U	U	U	U	U	U	U	U
Average depth of peat removed from				1.3	1.3	1.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
turbine foundations (m)				1.5	1.5	1.5		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Average length of hard-standing at base				97	97	97		0	0	0	0	0	0	0	0	0	0	0
(m)				91	91	91		U	U	U	U	U	U	U	U	U	U	U
Average width of hard-standing at base				35	35	35		0	0	0	0	0	0	0	0	0	0	0
(m)				33	33	33		U	U	U	U	U	U	U	U	U	U	U
Average depth of peat removed from				1.3	1.3	1.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
hard-standing (m)				1.5	1.5					0.0					0.0			0.0
Maximum depth of drains (m)				1.3	1.3	1.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total length of foundation and				122	122	122		0	0	0	0	0	0	0	0	0	0	0
hardstanding (m)				122	122	122		Ü	· ·	v	v	U	V	· ·		U	v	Ŭ
Total width of foundation and				60	60	60		0	0	0	0	0	0	0	0	0	0	0
hardstanding (m)				00	00	00		U	U	U	U	U	U	U	U	U	U	U
Area affected by drainage of foundation	6360	6360	6360	6360	6360	6360		0	0	0	0	0	0	0	0	0	0	0
and hardstanding area (m ²)	0300	6360	0300	6360	6360	6360	U	V	U	0	O	U	5	U	U	U	0	U
Total area affected by drainage of	57240	57240	57240	57240	57240	57240		0	0	0	0	0	0	0	0	0	0	0
foundation and hardstanding area (m ²)	57240	57240	57240	57240	57240	57240		U	U	U	U	U	U	U	U	U	U	U
Total volume affected by drainage of	37206	37206	27206	37206	37206	37206		0	0	0	0	0	0	0 -	0	0	0	0
foundation and hardstanding area (m ³)	31200	37206	37206	37206	37206	37206		-0	U	U	U	U	0	U	U	U	U	U

Peat affected by drainage of access		Total	
tracks	Exp	Min	Max
Floating roads			
Length of floating road that is drained	0	0	0
(m)	5 0	5 0	5 0
Floating road width (m)	5.0	5.0	5.0
Average depth of drains associated with floating roads (m)	0.00	0.00	0.00
Area affected by drainage of floating			
roads (m ²)	0	0	0
Volume affected by drainage of floating			
roads (m ³)	0	0	0
Excavated Road			
Length of access track that is excavated			
road (m)	7200	7200	7200
Excavated road width (m)	5	5	5
Average depth of peat excavated for	1.3	1.3	1.3
road (m)	1.5	1.5	1.5
Area affected by drainage of excavated	216000	216000	216000
roads (m²)	210000	210000	210000
Volume affected by drainage of	140400	140400	140400
excavated roads (m³)	140400	140400	140400
Rock-filled roads			
Length of rock filled road that is drained	0	0	0
(m) Rock filled road width (m)	0	0	0
Average depth of drains associated with	U	U	U
rock filled roads (m)	0.0	0.0	0.0
Area affected by drainage of rock-filled			
roads (m ²)	0	0	0
Volume affected by drainage of rock-			
filled roads (m ²)	0	0	0
Total area affected by drainage of			
access track (m ²)	216000	216000	216000
Total volume affected by drainage of			
access track (m ³)	140400	140400	140400

Peat affected by drainage of cable	Total				
trenches	Exp	Min	Max		
Length of any cable trench on peat that does not follow access tracks and is lined with a permeable medium (eg. sand) (m)	0	0	0		
Average depth of peat cut for cable trenches (m)	1.2	1.2	1.2		
Total area affected by drainage of cable trenches (m ²)	0	0	0		
Total volume affected by drainage of cable trenches (m³)	0.00	0.00	0.00		

Drainage around additional peat	Total					
excavated	Exp	Min	Max			
Volume of additional peat excavated (m³)	4110.0	4110.0	4110.0			
Area of additional peat excavated (m ²)	34800.0	34800.0	34800.0			
Average depth of excavated peat (m)	0	0	0			
Radius of area excavated (m)	105	105	105			
Radius of excavated and drained area (m)	120	120	120			
Total area affected by drainage (m ²)	10626	10626	10626			
Total volume affected by drainage (m ³)	1255.00	1255.00	1255.00			

RESULTS	Total				
RESULTS	Exp	Min	Max		
Total area affected by drainage due to windfarm (m²)	283866	283866	283866		
Total volume affected by drainage due to windfarm (m³)	178861	178861	178861		

Click here to move to 5d. CO2 loss from Click here drained peat

Click here to move to Payback Time Click here

Volume of peat drained

Note: Extent of site affected by drainage is calculated assuming an average extent of drainage around each drainage feature as given in the input data.

CO₂ loss due to drainage

Note: Note, CO2 losses are calculated using two approaches: IPCC default methodology and more site specific equations derived for this project. The IPCC methodology is included because it is the established approach, although it contains no site detail. The new equations have been derived directly from experimental data for acid bogs and fens (see Nayak et al, 2008 - Final report).

Expected

Minimum

Maximum

Click here to move to 5. Loss of soil CO₂ Click here to move to Payback Time Click here

Drained Land				
Total area affected by drainage due to wind farm construction (ha	28	28	28	
Will the hydrology of the site be restored on decommissioning?	No	No	No	
Will the habitat of the site be restored on decommissioning?	No	No	No	
Calculations of C Loss from Drained Land if Site is NOT Rest	ored after Decommi	ssioning		
Total volume affected by drainage due to wind farm (m³)	178861	178861	178861]
C Content of dry peat (% by weight)	53	20	64	
Dry soil bulk density (g cm ⁻³)	0.13	0.07	0.29	
Total GHG emissions from Drained Land (t CO ₂ equiv.)	46085	9242	123529	Assumption: Losses of GHG from
Total GHG Emissions from Undrained Land (t CO ₂ equiv.)	43357	9242	87326	drained and undrained land have same proportion throughout the
Calculations of C loss from Drained Land if Site IS Restored a	after Decommission	ng		emission period.
1. Losses if Land is Drained				Assumption: The drained soil is n
Flooded period (days year ⁻¹)	0	0	0	flooded at any time of the year.
Lifetime of windfarm (years) Time required for regeneration of bog plants after restoration	35	35	35	
(years)	10	5	15	
Methane Emissions from Drained Land				†
ck Rate of methane emission in drained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹)	-0.004	-0.020	0.016	Note:Conversion = (23 x 16/12) =
Conversion factor: CH ₄ -C to CO ₂ equivalents	30.67	30.67	30.67	30.67 CO ₂ equiv. (CH ₄ -C) ⁻¹
CH ₄ emissions from drained land (t CO ₂ equiv.)	-147	-712	717	
Carbon Dioxide Emissions from Drained Land				1
ck Rate of carbon dioxide emission in drained soil (t CO ₂ ha ⁻¹ yr ⁻¹)	21.04	22.38	22.57	
CO ₂ emissions from drained land (t CO ₂)	26878	25409	32028	1
Total GHG emissions from Drained Land (t CO ₂ equiv.)	26732	24698	32745	
2. Losses if Land is Undrained				•
Flooded period (days year ⁻¹)	178	178	178	Ī
Lifetime of windfarm (years)	35	35	35	
Time required for regeneration of bog plants after restoration	10	5	15	
(years)	10	3	13	ļ
Methane Emissions from Undrained Land				
Rate of methane emission in undrained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹)	0.00	-0.02	0.16	
Conversion factor: CH ₄ -C to CO ₂ equivalents	30.67	30.67	30.67	Note:Conversion = $(23 \times 16/12) = 30.67 \text{ CO}_2 \text{ equiv.} (\text{CH}_4\text{-C})^{-1}$
CH ₄ emissions from undrained land (t CO ₂ equiv.)	-131	-712	3802	30.07 CO ₂ equiv. (CH ₄ -C)
Carbon Dioxide Emissions from Undrained Land				
Rate of carbon dioxide emission in undrained soil (t CO ₂ ha ⁻¹ yr ⁻¹)	18.48	22.38	4.24	
CO ₂ emissions from undrained land (t CO ₂)	25280	25409	19346	
Total GHG Emissions from Undrained Land (t CO ₂ equiv.)	25150	24698	23149	
3. CO ₂ Losses due to Drainage				
Total GHG emissions from drained land (t CO ₂ equiv.)	46085	9242	123529	Ī
Total GHG emissions from undrained land (t CO ₂ equiv.)	43357	9242	87326	
RESULTS Total GHG emissions due to drainage (t CO ₂ equiv.)	2728	0	36203	
			55255	J

Click here to move to 5. Loss of soil CO₂ Click here to move to Payback Time

CO₂ loss due to drainage

Note: Note, CO₂ losses are calculated using two approaches: IPCC default methodology and more site specific equations derived for this project. The IPCC methodology is included because it is the established approach, although it contains no site detail. The new equations have been derived directly from experimental data for acid bogs and fens (see Nayak et al, 2008 - Final report).

Emission rates from soils

Note: Note, CO2 losses are calculated using two approaches: IPCC default methodology and more site specific equations derived for this project. The IPCC methodology is included because it is the established approach, although it contains no site detail. The new equations have been thoroughly tested against experimental data (see Nayak et al, 2008 - Final report).

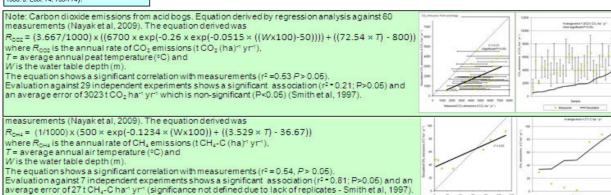
Click here to move to 5d. Click here to move to Payback Time Click here

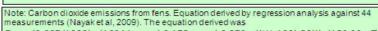
Selected Methodology = Site specific (required for planning applications) Type of peatland = Acid Bog

Calculations following IPCC default methodology Emission characteristics of acid bogs (IPCC, 1997)	Expected	Minimum	Maximum
Flooded period (days year ⁻¹)	178	178	178
Annual rate of methane emission (t CH ₄ -C ha ⁻¹ yr ⁻¹)	0.04015	0.04015	0.04015
Annual rate of carbon dioxide emission (t CO ₂ ha ⁻¹ yr ⁻¹)	35.2	35.2	35.2
Emission characteristics of fens (IPCC, 1997)			
Flooded period (days year ⁻¹)	169	169	169
Annual rate of methane emission (t CH ₄ -C ha ⁻¹ yr ⁻¹)	0.219	0.219	0.219
Annual rate of carbon dioxide emission (t CO ₂ ha ⁻¹ yr ⁻¹)	35.2	35.2	35.2
Selected emission characteristics (IPCC, 1997)			
looded period (days year ⁻¹)	178	178	178
Annual rate of methane emission (t CH ₄ -C ha ⁻¹ yr ⁻¹)	0.04015	0.04015	0.04015
Annual rate of carbon dioxide emission (t CO ₂ ha ⁻¹ yr ⁻¹)	35.2	35.2	35.2
Calculations following ECOSSE based methodology			
Orained Land			
Total area affected by drainage due to wind farm construction (ha)	28	28	28
otal volume affected by drainage due to wind farm construction (m ³)	178861	178861	178861
Soil Characteristics that Determine Emission Rates	T		
verage annual air temperature at the site (°C)	9.27	4.6	15
verage water table depth at site (m)	0.50	1.00	0.10
Average water table depth of drained land (m)	0.63	1.00	0.63
Annual Emission Rates following site specific methodology		T	Γ
Acid bogs Rate of carbon dioxide emission in drained soil (t CO ₂ ha ⁻¹ yr ⁻¹)	21.04	22.38	22.57
	1 41.0 1		
		22.38	4.24
Rate of carbon dioxide emission in undrained soil (t CO ₂ ha ⁻¹ yr ⁻¹)	18.48	22.38	4.24 0.016
Rate of carbon dioxide emission in undrained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of methane emission in drained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹)	18.48 -0.004	-0.020	0.016
Rate of carbon dioxide emission in undrained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of methane emission in drained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of methane emission in undrained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹)	18.48		
Rate of carbon dioxide emission in undrained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of methane emission in drained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of methane emission in undrained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Fens	18.48 -0.004	-0.020	0.016
Rate of carbon dioxide emission in undrained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of methane emission in drained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of methane emission in undrained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Fens Rate of carbon dioxide emission in drained soil (t CO ₂ ha ⁻¹ yr ⁻¹)	18.48 -0.004 0.00	-0.020 -0.02	0.016 0.16
Rate of carbon dioxide emission in undrained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of methane emission in drained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of methane emission in undrained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Fens Rate of carbon dioxide emission in drained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of carbon dioxide emission in undrained soil (t CO ₂ ha ⁻¹ yr ⁻¹)	18.48 -0.004 0.00 60.88 55.17	-0.020 -0.02 61.89 61.89	0.016 0.16 64.10 10.58
Rate of carbon dioxide emission in undrained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of methane emission in drained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of methane emission in undrained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Fens Rate of carbon dioxide emission in drained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of carbon dioxide emission in undrained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of methane emission in drained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹)	18.48 -0.004 0.00	-0.020 -0.02 61.89	0.016 0.16 64.10
Rate of carbon dioxide emission in undrained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of methane emission in drained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of methane emission in undrained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Fens Rate of carbon dioxide emission in drained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of carbon dioxide emission in undrained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of methane emission in drained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of methane emission in undrained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹)	18.48 -0.004 0.00 60.88 55.17 -0.003	-0.020 -0.02 61.89 61.89 -0.007	0.016 0.16 64.10 10.58 0.001
Rate of carbon dioxide emission in undrained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of methane emission in drained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of methane emission in undrained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of carbon dioxide emission in drained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of carbon dioxide emission in undrained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of methane emission in drained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of methane emission in undrained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Relected emission characteristics following site specific methodology	18.48 -0.004 0.00 60.88 55.17 -0.003	-0.020 -0.02 61.89 61.89 -0.007	0.016 0.16 64.10 10.58 0.001
Rate of carbon dioxide emission in undrained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of methane emission in drained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of methane emission in undrained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of carbon dioxide emission in drained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of carbon dioxide emission in undrained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of methane emission in drained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of methane emission in undrained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Relected emission characteristics following site specific methodology Rate of carbon dioxide emission in drained soil (t CO ₂ ha ⁻¹ yr ⁻¹)	18.48 -0.004 0.00 60.88 55.17 -0.003 0.00	-0.020 -0.02 61.89 61.89 -0.007 -0.01	0.016 0.16 64.10 10.58 0.001 0.21
Rate of carbon dioxide emission in undrained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of methane emission in drained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of methane emission in undrained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of carbon dioxide emission in drained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of carbon dioxide emission in undrained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of methane emission in drained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of methane emission in undrained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Relected emission characteristics following site specific methodology Rate of carbon dioxide emission in drained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of carbon dioxide emission in undrained soil (t CO ₂ ha ⁻¹ yr ⁻¹)	18.48 -0.004 0.00 60.88 55.17 -0.003 0.00	-0.020 -0.02 61.89 61.89 -0.007 -0.01	0.016 0.16 64.10 10.58 0.001 0.21 22.57 4.24
Rate of carbon dioxide emission in undrained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of methane emission in drained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of methane emission in undrained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of carbon dioxide emission in drained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of carbon dioxide emission in undrained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of methane emission in drained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of methane emission in undrained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of methane emission in drained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of carbon dioxide emission in drained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of carbon dioxide emission in undrained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of methane emission in drained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹)	18.48 -0.004 0.00 60.88 55.17 -0.003 0.00	-0.020 -0.02 61.89 61.89 -0.007 -0.01	0.016 0.16 64.10 10.58 0.001 0.21
Rate of carbon dioxide emission in undrained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of methane emission in drained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of methane emission in undrained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of carbon dioxide emission in drained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of carbon dioxide emission in undrained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of methane emission in drained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of methane emission in undrained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of methane emission in drained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of carbon dioxide emission in drained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of carbon dioxide emission in undrained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of methane emission in drained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of methane emission in drained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of methane emission in undrained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹)	18.48 -0.004 0.00 60.88 55.17 -0.003 0.00 21.04 18.48 -0.004	-0.020 -0.02 61.89 61.89 -0.007 -0.01 22.38 22.38 -0.020	0.016 0.16 64.10 10.58 0.001 0.21 22.57 4.24 0.016
Rate of carbon dioxide emission in undrained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of methane emission in drained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of methane emission in undrained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of carbon dioxide emission in drained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of carbon dioxide emission in undrained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of methane emission in drained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of methane emission in undrained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of methane emission in undrained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of carbon dioxide emission in drained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of carbon dioxide emission in undrained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of methane emission in drained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of methane emission in undrained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹)	18.48 -0.004 0.00 60.88 55.17 -0.003 0.00 21.04 18.48 -0.004	-0.020 -0.02 61.89 61.89 -0.007 -0.01 22.38 22.38 -0.020	0.016 0.16 64.10 10.58 0.001 0.21 22.57 4.24 0.016
Rate of carbon dioxide emission in undrained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of methane emission in drained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of methane emission in undrained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of carbon dioxide emission in drained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of carbon dioxide emission in undrained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of methane emission in drained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of methane emission in undrained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of methane emission in undrained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of carbon dioxide emission in drained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of carbon dioxide emission in undrained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of methane emission in drained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of methane emission in undrained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of methane emission in undrained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) RESULTS Selected Emission Rates	18.48 -0.004 0.00 60.88 55.17 -0.003 0.00 21.04 18.48 -0.004	-0.020 -0.02 61.89 61.89 -0.007 -0.01 22.38 22.38 -0.020	0.016 0.16 64.10 10.58 0.001 0.21 22.57 4.24 0.016
Rate of carbon dioxide emission in undrained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of methane emission in drained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of methane emission in undrained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of carbon dioxide emission in drained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of carbon dioxide emission in undrained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of methane emission in drained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of methane emission in undrained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of methane emission in undrained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of carbon dioxide emission in drained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of carbon dioxide emission in undrained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of methane emission in drained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of methane emission in undrained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) RESULTS Relected Emission Rates Rate of carbon dioxide emission in drained soil (t CO ₂ ha ⁻¹ yr ⁻¹)	18.48 -0.004 0.00 60.88 55.17 -0.003 0.00 21.04 18.48 -0.004 0.00	-0.020 -0.02 61.89 61.89 -0.007 -0.01 22.38 22.38 -0.020 -0.02	0.016 0.16 64.10 10.58 0.001 0.21 22.57 4.24 0.016 0.16
Rate of carbon dioxide emission in undrained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of methane emission in drained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of methane emission in undrained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of carbon dioxide emission in drained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of carbon dioxide emission in undrained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of methane emission in drained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of methane emission in undrained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of methane emission in drained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹) Rate of carbon dioxide emission in drained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of carbon dioxide emission in undrained soil (t CO ₂ ha ⁻¹ yr ⁻¹) Rate of methane emission in drained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹)	18.48 -0.004 0.00 60.88 55.17 -0.003 0.00 21.04 18.48 -0.004 0.00	-0.020 -0.02 61.89 61.89 -0.007 -0.01 22.38 22.38 -0.020 -0.02	0.016 0.16 64.10 10.58 0.001 0.21 22.57 4.24 0.016 0.16

Click here to move to 5d. CO2 loss from drained peat Click here to move to Payback Time

Click here


Emission rates from soils

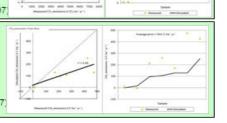

Note: Note, CO2 losses are calculated using two approaches: IPCC default methodology and more site specific equations derived for this project. The IPCC methodology is included because it is the stablished approach, although it contains no site detail. The new equations have been thoroughly tested against experimental data (see Nayak et al, 2008 - Final report).

Assumption: The period of flooding is taken to be 178 days yr1 for acid bogs monthly mean temperature and the lengths of inundation (IPCC, 1997, Revised 1996 IPCC guidelines for national greenhouse gas ventories. Vol 3. table 5-13)

Assumption: The CH₄ emission rate provided for acid bogs is 11 (1-38) mg CH₄-C m⁻² day⁻¹ x 365 days; and for fens is 60 (21-162) mg CH₄-C m⁻² day⁻¹ x 365 days (Aselmann & Crutz J.Atm.Chem. 8, 307-358)

Assumption: CO₂ emissions on drainage of organic soils for upland crops (e.g., grain, vegetables) are 3.667x9.6 (7.9-11.3) t CO₂ ha⁻¹ yr⁻¹ in 1986. J. Ecol. 74, 755-774).

 $R_{cos} = (3.667/1000) \times (16244 \times exp(-0.175 \times exp(-0.073 \times ((W \times 100) - 50))) + (153.23 \times T))$ where R_{coz} is the annual rate of CO₂ emissions (t CO₂ (ha)⁻¹ yr⁻¹), T = average annual peat temperature (°C) and W is the water table depth (m).


The equation shows a significant correlation with measurements (r^2 = 0.42, P> 0.05). Evaluation against 18 independent experiments shows a significant association (r^2 = 0.56; P>0.05) and an average error of 2108 t CO $_2$ hard yrd (significance not defined due to lack of replicates-Smith et al., 1997)

Note: Methane emissions from fens. Equation derived by regression analysis against experimental data from 35 measurements (Nayak et al, 2009). The equation derived was $R_{\text{CH4}} = (1/1000) \times (-10+563.62 \times \text{exp}(-0.097 \times (W \times 100)) + (0.662 \times 7))$ where R_{CH4} is the annual rate of CH_4 emissions (t CH_4 -C (ha)¹ yr¹), T = average annual air temperature (°C) and

Wis the water table depth (n

The equation shows a significant correlation with measurements ($r^2 = 0.41$, P > 0.05).

Evaluation against 7 independent experiments shows a significant association (r* 0.69; P>0.05) and an average error of 164 t CH₄-C harlyr' (significance not defined due to lack of replicate-Smith et al., 1997)

Emissions due to loss of DOC and POC

Note: Note, CO2 losses from DOC and POC are calculated using a simple approach derived from generic estimates of the percentage of the total CO2 loss that is due to DOC or

No POC losses for bare soil included yet. If extensive areas of bare soil is present at site need modified calculation (Birnie et al, 1991)

	Expected	Minimum	Maximum	<u>_</u>
Total C loss				Note: Only restored drained land included because if land is not
Gross CO ₂ loss from restored drained land (t CO ₂)	0	0	0	Note: Only restored drained fand included because it land is not
Gross CH ₄ loss from restored drained land (t CO ₂ equiv.)	0	0	0	
Gross CO ₂ loss from improved land (t CO ₂)				
Degraded Bog	0	0	0	
Felled Forestry	0	0	0	
Borrow Pits	0	0	0	
Foundations & Hardstanding	0	0	0	Assumption: DOC loss ranges between 7 - 40% of the total gaseous
Gross CH ₄ loss from improved land (t CO ₂ equiv.)				loss if calculated from the reported (minimum and maximum) values
Degraded Bog	0	0	0	in Worrall 2009 and is 26% of the total gaseous loss if calculated from the mean of reported maximum and minimum value in Worrall 2009.
Felled Forestry	0	0	0	These DOC values are flux based on soil water concentration (i.e.
Borrow Pits	0	0	0	12.5 - 85.9 MgC/KM ² /yr)
Foundations & Hardstanding	0	0	0	and not on flux at catchment outlet (i.e. 10.3 - 21.8 MgC/KM²/yr)
Conversion factor: CH ₄ -C to CO ₂ equivalents	30.6667	30.6667	30.6667	Worrall, F. et al., 2009. The multi-annual carbon budget of a peat-covered catchment. Science of The
% total soil C losses, lost as DOC	26	7	40	Assumption: In the long term, 100% of leached DOC is assumed to be
% DOC loss emitted as CO ₂ over the long term	100	100	100	lost as CO ₂
% total soil C losses, lost as POC	8	4	10	Assumption: POC loss ranges between 4-10% of the total
% POC loss emitted as CO ₂ over the long term	100	100	100	gaseous loss if calculated from the reported values and is 8%
Total gaseous loss of C (t C)	0	0	0	of the total gaseous loss if calculated from the mean of
Total C loss as DOC (t C)	0	0	0	reported maximum and minimum value in Worrall 2009. POC
Total C loss as POC (t C)	0	0	0	range is (7 - 22.4 MgC/KM ² /yr) (Worrall et al, 2009).
I				
RESULTS				
Total CO ₂ loss due to DOC leaching (t CO ₂)	0	0	0	Assumption: In the long term, 100% of leached POC is assumed to be
Total CO ₂ loss due to POC leaching (t CO ₂)	0	0	0	lost as CO ₂
Total CO ₂ loss due to DOC & POC leaching (t CO ₂)	0	0	0	
Additional CO ₂ payback time of windfarm due to DOC & F	POC			
coal-fired electricity generation (months)	0	0	0	
grid-mix of electricity generation (months)	0	0	0	
fossil fuel - mix of electricity generation (months)	0	0	0	

Click here to move to Payback Time Click here

Emissions due to loss of DOC and POC

Note: Note, CO2 losses from DOC and POC are calculated using a simple approach derived from generic estimates of the percentage of the total CO2 loss that is due to DOC or POC leaching

No POC losses for bare soil included yet. If extensive areas of bare soil is present at site need modified calculation (Birnie et al, 1991)

Emissions due to forest felling - calculation using simple management data

Note: Emissions due to forestry felling are calculated from the reduced carbon sequestered per crop rotation. If the forestry was due to be removed before the planned development, this C loss is not attributable to the wind farm and so the area of forestry to be felled should be entered as zero.

	Expected	Minimum	Maximum
Emissions due to forestry felling			
Area of forestry plantation to be felled (ha)	11.25	11.25	11.25
Carbon sequestered (tC ha ⁻¹ yr ⁻¹)	3.45	3.5	3.55
Lifetime of windfarm (years)	35	35	35
Carbon sequestered over the lifetime of the windfarm (t C ha ⁻¹)	120.75	122.5	124.25
RESULTS			
Total carbon loss due to felling of forestry (t CO ₂)	4981	5054	5126
Additional CO ₂ payback time of windfarm due to managemen	t of forestry		-
coal-fired electricity generation (months)	33	34	33
grid-mix of electricity generation (months)	150	154	152
fossil fuel - mix of electricity generation (months)	73	75	74

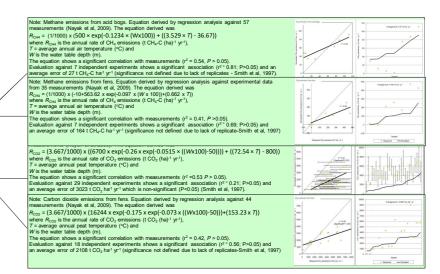
Click here to move to Payback Time Click here

Emissions due to forest felling - calculation using simple management data

Note: Emissions due to forestry felling are calculated from the reduced carbon sequestered per crop rotation. If the forestry was due to be removed before the planned development, this C loss is not attributable to the wind farm and so the area of forestry to be felled should be entered as zero.

Gains due to site improvement

Note: Note, CO₂ losses are calculated using two approaches: IPCC default methodology and more site specific equations derived for this project. The IPCC methodology is included because it is the established approach, although it contains no site detail. The new equations have been thoroughly tested against experimental data (see Nayak et al., 2008 - Final report).


Selected Methodology = Site specific (required for planning applications)
Type of peatland = Acid Bog

Reduction in GHG emissions due to improvement of site		Expecte	d result			Minimu	m result		Maximum result			
	Dograded Bog Folled Forestry Borrow Pits Foundations &			Dograded Bog Folled Forcetry Rorrow Bits Foundations &				Dograded Rog Folled Forcetry Rorrow Pits Foundations &				
Improvement of	Degraded Bog	relieu i orestry	DOITOW Fits	Hardstanding	Degraded Bog	I elled I olestry	DOITOW Fits	Hardstanding	Degraded Bog	I elled I orestry	DOITOW Fits	Hardstanding
Description of site Description of site Option of time when effectiveness of the improvement can be guaranteed (years).	25	25	25	35	25	25	25	35	25	25	25	35
Period of time when effectiveness of the improvement can be guaranteed (years) Area to be improved (ha)	0	0	0	0	0	0	0	0	0	0	0	0
Average air temperature at site (°C)	9.27	9.27	9.27	9.27	4.6	4.6	4.6	4.6	15	15	15	15
Depth of peat drained (m)	1.30	1.30	0.00	1.30	1.30	1.30	0.00	1.30	1.30	1.30	0.00	1.30
Depth of peat above water table before improvement (m)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Depth of peat above water table after improvement (m)	0.00	0.00	0.00	1.30	0.00	0.00	0.00	1.30	0.00	0.00	0.00	1.30
2. Losses with improvement												
Flooded period (days year ⁻¹)	178	178	178	178	178	178	178	178	178	178	178	178
Time required for hydrology and habitat to return to its previous state on restoration	0	0	0	0	0	0	0	0	0	0	0	0
(years) Improved period (years)	25	25	25	35	25	25	25	35	25	25	25	35
Methane emissions from improved land	25	20	20	33	25	20	20	33	25	20	25	33
Site specific methane emission from improved soil on acid bogs (t CH _a -C ha ⁻¹ yr ⁻¹)	0.496	0.496	0.496	-0.004	0.480	0.480	0.480	-0.020	0.516	0.516	0.516	0.016
Site specific methane emission from improved soil on fens (t CH ₄ -C ha ⁻¹ yr ⁻¹)	0.560	0.560	0.560	-0.004	0.557	0.557	0.557	-0.020	0.564	0.564	0.564	0.000
IPCC annual rate of methane emission on acid bogs (t CH _a -C ha ⁻¹ yr ⁻¹)	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040
IPCC annual rate of methane emission on fens (t CH ₄ -C ha ⁻¹ yr ⁻¹)	0.040	0.040	0.040	0.040	0.040	0.040	0.219	0.219	0.040	0.040	0.219	0.040
, , , , ,								1				1
Selected annual rate of methane emission (t CH ₄ -C ha ⁻¹ yr ⁻¹)	0.496	0.496	0.496	-0.004	0.480	0.480	0.480	-0.020	0.516	0.516	0.516	0.016
CH ₄ emissions from improved land (t CO ₂ equiv.)	0	0	0	0	0	0	0	0	0	0	0	0
Carbon dioxide emissions from improved land												
Site specific CO ₂ emission from improved soil on acid bogs (t CO ₂ ha ⁻¹ yr ⁻¹)	0.34	0.34	0.34	24.00	-0.91	-0.91	-0.91	22.76	1.86	1.86	1.86	25.52
Site specific CO ₂ emissions from improved soil on fens (t CO ₂ ha ⁻¹ yr ⁻¹)	5.27	5.27	5.27	64.75	2.64	2.64	2.64	62.12	8.49	8.49	8.49	67.97
IPCC annual rate of carbon dioxide emission on acid bogs (t CO ₂ ha ⁻¹ yr ⁻¹)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
IPCC annual rate of carbon dioxide emission on fens (t CO ₂ ha ⁻¹ yr ⁻¹)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Selected annual rate of carbon dioxide emission (t CO ₂ ha ⁻¹ yr ⁻¹)	0.34	0.34	0.34	24.00	-0.91	-0.91	-0.91	22.76	1.86	1.86	1.86	25.52
CO ₂ emissions from improved land (t CO ₂)	0	0	0	0	0	0	0	0	0	0	0	0
Total GHG emissions from improved land (t CO ₂ equiv.)	0	0	0	0	0	0	0	0	0	0	0	0
3. Losses without improvement												
Flooded period (days year ⁻¹)	0	0	0	0	0	0	0	0	0	0	0	0
Time required for hydrology and habitat to return to its previous state on restoration	0	0	0	0	0	0	0	0	0	0	0	0
(years)	-		-				,			_	Ů	
Improved period (years) Methane emissions from unimproved land	25	25	25	35	25	25	25	35	25	25	25	35
	0.400	0.496	0.400	0.400	0.480	0.480	0.480	0.400	0.540	0.540	0.540	0.540
Site specific methane emission from unimproved soil on acid bogs (t CH ₄ -C ha ⁻¹ yr ⁻¹)	0.496		0.496	0.496				0.480	0.516	0.516	0.516	0.516
Site specific methane emission from unimproved soil on fens (t CH ₄ -C ha ⁻¹ yr ⁻¹)	0.560	0.560	0.560	0.560	0.557	0.557	0.557	0.557	0.564	0.564	0.564	0.564
IPCC annual rate of methane emission on acid bogs (t CH ₄ -C ha ⁻¹ yr ⁻¹)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
IPCC annual rate of methane emission on fens (t CH ₄ -C ha ⁻¹ yr ⁻¹)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Selected annual rate of methane emission (t CH ₄ -C ha ⁻¹ yr ⁻¹)	0.496	0.496	0.496	0.496	0.480	0.480	0.480	0.480	0.516	0.516	0.516	0.516
CH ₄ emissions from unimproved land (t CO ₂ equiv.)	0	0	0	0	0	0	0	0	0	0	0	0
Carbon dioxide emissions from unimproved land												
Site specific CO ₂ emission from unimproved soil on acid bogs (t CO ₂ ha ⁻¹ yr ⁻¹)	0.34	0.34	0.34	0.34	-0.91	-0.91	-0.91	-0.91	1.86	1.86	1.86	1.86
Site specific CO ₂ emissions from unimproved soil on fens (t CO ₂ ha ⁻¹ yr ⁻¹)	5.27	5.27	5.27	5.27	2.64	2.64	2.64	2.64	8.49	8.49	8.49	8.49
IPCC annual rate of carbon dioxide emission on acid bogs (t CO ₂ ha ⁻¹ yr ⁻¹)	35.20	35.20	35.20	35.20	35.20	35.20	35.20	35.20	35.20	35.20	35.20	35.20
IPCC annual rate of carbon dioxide emission on fens (t CO ₂ ha ⁻¹ yr ⁻¹)	35.20	35.20	35.20	35.20	35.20	35.20	35.20	35.20	35.20	35.20	35.20	35.20
Selected annual rate of carbon dioxide emission (t CO ₂ ha ⁻¹ vr ⁻¹)	0.34	0.34	0.34	0.34	-0.91	-0.91	-0.91	-0.91	1.86	1.86	1.86	1.86
CO ₂ emissions from unimproved land (t CO ₂)	0.54	0.34	0.34	0.54	0	0	0.91	0	0	0	0	0
Total GHG emissions from unimproved land (t CO ₂ equiv.)	0	0	0	0	0	0	0	0	0	0	0	0
RESULTS		· ·	0	U U		, ,	•	U U		Ü	U	
4. Reduction in GHG emissions due to improvement of site												
Total GHG emissions from improved land (t CO ₂ equiv.)	0	0	0	0	0	0	0	0	0	0	0	0
Total GHG emissions from unimproved land (t CO ₂ equiv.)	0	0	0	0	0	0	0	0	0	0	0	0
Reduction in GHG emissions due to improvement (t CO ₂ equiv.)	0	0	0	0	0	0	0	0	0	0	0	0
Additional CO ₂ payback time of windfarm due to site improvement												
coal-fired electricity generation (months)	0	0	0	0	0	0	0	0	0	0	0	0
grid-mix of electricity generation (months)	0	0	0	0	0	0	0	0	0	0	0	0
fossil fuel - mix of electricity generation (months)	0	0	0	0	0	0	0	0	0	0	0	0

Click here to move to Payback Time Click here

Gains due to site improvement

Note: Note, CO₂ losses are calculated using two approaches: IPCC default methodology and more site specific equations derived for this project. The IPCC methodology is included because it is the established approach, although it contains no site detail. The new equations have been thoroughly tested against experimental data (see Nayak et al, 2008 - Final report).

Note: Methane emissions from acid bogs. As above

Note: Methane emissions from fens. As above

Note: CO₂ emissions from acid bogs. As

TII CARBON TOOL

,				Distance Assumptions	TII Embodied Carbon Tool Inputs (https://web.tii.ie/index.html)						TII Transport Inputs (https://web.tii.ie/index.html)			
Material	Total no. Truck Loads	Truck Types	TII Embodied Carbon	TII Traffic	Distance (km)	Category	Sub-Category	Material	Quantity	Unit	Embodied tCO2e	Transport Type	Distance (km)	Transport TCO2e
						Series 1700 Structural	Concrete -	Construction - Standard						
Concrete	963	Concrete mixers	_	1	17.4	Concrete	Construction General	Mix (Average)	18,489,600	kg	1911.09	HGV - Rigid - Average	16756.2	20.5118
			•				Concret		10,100,000		1011100			
Delivery of plant	35	Large artic		✓	96.85							HGV- All - Average	3389.75	3.6762
Fencing & gates	3	Large artic		✓	17.4							HGV- All - Average	52.2	0.0566
Compound setup	36	Large artic		√	17.4							HGV- All - Average	626.4	0.6793
Compound setup	30	Large artic		 	17.4	Other	Structural	Anchorages and holding				110 v 7th 71verage	020.4	0.0733
Steel	24	Large artic	✓	✓	96.85		Steelwork	down bolt assemblies	480	tonnes	860.69	HGV- All - Average	2324.4	2.5208
						Series 2400 - Brickwork,	Brickwork and	General Stone				HGV - Rigid -		
Rock and stone	14450	Truck	√	√	17.4	Blockwork and Stonework	Blockwork		289,000.00	tonnes	22831	Average	251430	258.3594
Ducting and cabling (internal)	264	Large artic		√	17.4							HGV- All - Average	4593.6	4.9818
Tree felling	17	Large artic		1	96.85							HGV- All - Average	1646.45	1.7856
Crane (to lift steel)	1	Large artic		1	96.85							HGV- All - Average	96.85	0.105
Substation	100	Large artic		√	17.4							HGV- All - Average	1740	1.887
BESS	100	Large artic	√	√	17.4							HGV- All - Average	1740	1.887
Cranes for turbines	12	Large artic		1	17.4							HGV- All - Average	208.8	0.2264
Refuelling for plant	186	Large artic		1	17.4							HGV- All - Average	3236.4	3.5099
Site maintenance	135	Large artic		1	17.4							HGV- All - Average	2349	2.5475
Miscellaneous	90	Large artic		1	17.4							HGV- All - Average	1566	1.6983
Total		<u>g</u>				· 					25,602.78			304.43

List of Assumptions

Embodied Carbon Assumptions					
Item	Description	Assumption			
Volume of Concrete Mixer	Calculation completed based on the average concrete mixer holding 8m3 of concrete	8			
Volume of Average Artic Truck	Calculation completed based on the average artic truck having a carrying capacity of 20 tonnes	20			
Ducting and cabling (internal)	Embodied carbon of electrical equipment not included as an option in TII Carbon Tool	-			
Grid connection cable laying	Embodied carbon of electrical equipment not included as an option in TII Carbon Tool	-			
Tree Felling	Embodied carbon of tree felling is included in the Macauley Institute Carbon Calculator for Wind Farms on Peatland	-			
Turbine Lifecycle	Embodied carbon of the overall turbine lifecycle is included in the Macauley Institute Carbon Calculator for Wind Farms on Peatland	-			
Concrete	Concrete will be required for various elements of the Proposed Project Approximately 7,704m3 of material is assumed to be required based on 963 concrete mixers being required, assumed 8m3 carrying capacity, and assumed density of 2400kg/m3 The TII Carbon tools requires units in kg for this material type, therefore the following calculation was completed: -7,704m3 * 2400kg/m3 = 20,412,000kg	18,489,600.00			
Steel	Steel will be required for various elements of the Proposed Project. Approximately 480 tonnes of steel is assumed to be required based on 24 trucks being required and an assumed carrying capacity of 20 tonnes	480.00			
Rock and Stone	Rock and Stone will be required for various elements of the Proposed Project. Approximately 289,000 tonnes of rock/stone is assumed to be required based on 14,450 trucks being required and an assumed carrying capacity of 20 tonnes	289,000.00			

Please note that the assumptions for the embodied carbon and traffic assumptions are made based on best estimates of material sources. In reality the location of material sources will be dependent on what is available at the time of construction. The implications of distance variations on the estimation for carbon calculations is of a very low magnitude within the context of the overall carbon calculations and considered appropriate for the purposes of assessment in the EIAR.

Traffic Assumptions					
Item	Description	Assumption			
Import (P) Distance	For modelling purposes, the average distance from Shannon Foynes Port and the Port of Galway for transport of all other materials for the site	96.85			
Quarry (Q) Distance	As outlined in Section 4.5.3 of Chapter 4 of the EIAR 3 no. quarries have been identified within 20km for the purposes of delivering material to the Proposed Project site. An average distance of the construction haul routes has been used for modelling purposes.	17.4			
Truck Emissions Factor	Calculated from an HGV - Rigid - Average emission factor as provided in the TII Carbon Tool. Source: 2024 DEZNZ emission factors - 'Delivery vehicles' tab, All Rigids HGVs and used Average laden weight. 2024 DEZNZ emission factors - 'WTT - delivery vehicles & freight' tab, all Rigids HGVs and used Average laden weight.	1.02756			
Large Artic Emission Factor	Calculated from an HGV - All - Average emission factor as provided in the TII Carbon Tool. Source: 2024 DEZNZ emission factors - 'Delivery vehicles' tab, All HGVs and used Average laden weight. 2024 DEZNZ emission factors - 'WTT - delivery vehicles & freight' tab, all HGVs and used Average laden weight.	1.0845			

Truck Emissions Factor Calculated from an HGV - Articulated - Average emission	factor as provided in the TII Carbon Tool 1.30212
--	---

Please note that the assumptions for the embodied carbon and traffic assumptions are made based on best estimates of material sources. In reality the location of material sources will be dependent on what is available at the time of construction. The implications of distance variations on the estimation for carbon calculations is of a very low magnitude within the context of the overall carbon calculations and considered appropriate for the purposes of assessment in the EIAR.

Carbon Fixing Vegetation Assumptions					
Item	Item Description				
Calculation of Carbon Storage Potential in Enhancement Measures	The carbon storage capacity of restored habitats will vary over time as vegetation matures and land use and the baseline environment change. Therefore, while it can be assumed that native woodland replanting and enhancement of wet heath habitat on the Site will result in an increased capacity of carbon storage due to the carbon storage potential that exists within these habitats, to ensure the assessment below is identified under a theoretical precautionary scenario the quantification of these potential carbon savings (via an increase in carbon storage potential) associated with these measures has not been included in the carbon savings assessment. Please note, the carbon sequestration potential associated with the replanting of native woodland will be able to be determined in the future via the Teagasc Forest Carbon Tool; currently this is not able to be completed due to Teagasc carrying out further analysis and validation on current data and the sequestration potential not being available in the public domain.	Not considered in assessment or quantified			
Calculation of Carbon Loss from removal of carbon fixing vegetation	Carbon losses associated with the removal of other carbon-fixing vegetation will result in additional carbon losses. These have not been quantified as the lack of consistent national-level field data and methodologies limits the ability to make accurate projections on carbon sequestration potential for other carbon fixing habitat types, i.e., hedgerow, grassland, etc., and therefore carbon loss associated with removal. While it can be assumed that loss of carbon fixing vegetation will occur as part of the Proposed Project due to the removal of these habitat types, the exact carbon loss is not quantifiable.	Not considered in assessment or quantified			